

St. Martin's Engineering College UGC Autonomous

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

B. TECH MINOR IN AIML

	Year/ Semester	Course Code			ours j Weel			Max	imum Ma	rks
S.No.	Semester		Course Title	L	Т	Р	Credits	Internal (CIE)	External (SEE)	Total
1	III-I	CSM508PC	Foundations of Artificial Intelligence	3	0	0	3	30	70	100
2	111-1	CSM510PC	Artificial Intelligence Lab	0	0	3	1.5	30	70	100
3	III-II	CSM608PC	Artificial Intelligence Applications	4	0	0	2 4	30	70	100
4		CSM717PC	(Either online through MOOCS or off-line Class) Machine Learning OR	3	0	0	3	30	70	100
	IV-I	CSM716PC	Deep Learning							
5	1 • -1	CSM718PC	(The corresponding Laboratory) Machine Learning Lab OR	0	0	3	1.5	30	70	100
		CSM707PC	Deep Learning Lab							
		CSM805PE	Any one of the following subjects: Robotics Process Automation							
6		CSM806PE	Natural Language Processing	3	0	0	3	30	70	100
Ŭ	IV-II	CSM807PE	Game theory	5	Ŭ	Ŭ	5	50	70	100
		CSM809PE	Computer Vision and Robotics							
		CSM810PE	Speech and Video Processing							
		CSM808PE	Soft Computing		0	-			100	100
7		CSM803PC	Mini Project	0	0	3	2		100	100
	X	•	Total	13	0	9	18	180	420	700

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

Course C	Code	Programme	Ho	urs/	Week	Credits	Ma	ximum	n Marks
CSM508	PC	Minor	L	Т	Р	С	CIE	SEE	Total
C511500	rt	WIND	3	0	0	3	30	70	100
 Introduction theoretical algorithm COURSEO After constraints Design clustering Evaluate Design world appending Arrows Defining Arrows 	will enable w and store the con- al foundans. UTCON ompletion and implications DEFINI rtificial g Knowle	le students to rengthen important m ncept of learning patt tion for understandin MES n of course, students ement machine learn ns. erpret the results of th ement various machi	would ing stat would ing so ne dif ne lea INTI	from te of t l be a olutio feren arning ELLI I tec g sim	data and he art M ble to: ns to cl t ML te g algorit IGENC hniques ple fact	d develop Machine I assification chniques. thms in an CE s, Using s in logic,	a strong cearning on, regre trange of Predica , Compu	ssion a f Real- Cla tte Log	nd sses:12 gic and
-		EMATICAL FOUN		0				Cla	sses:12
Mathematica Machines le	l foundater	ations: Matrix Theo from data, Classific pervised learning.	ry ar	nd St	tatistics			-	
UNIT-III	LINEA								
UN11-III		R REGRESSION						Cla	asses:12
Linear Regro		AR REGRESSION Iodel representation Linear Regression, Gi		-		-	variabl		

UNIT-V	CLUSTERING ALGORITHMS	Classes:12
Discussion of	on clustering algorithms and use-cases centered around clustering ar	d classificatio
TEXT BOO	DKS	
1. Saroj Ka	ushik, Artificial Intelligence, Cengage Learning, 1st Edition2011.	C
2. Yuxi (Ha 2017.	ayden) Liu, "Python Machine Learning by Example", Packet Publis	shing Limited
REFEREN	CE BOOKS	100
	DasBhattacharjee, "PracticalWorkbookArtificialIntelligenceand puting for beginners, Shroff Publisher-X team Publisher.	
2. Tom Mit	chell, Machine Learning, McGraw Hill,2017.	
3. Christop	her M.Bishop, Pattern Recognition and Machine Learning, Springe	r, 2011.
4. T.Hastie	R.Tibshirani, J.Friedman.The Elements of Statistical Learning,2e,	2011.
WEB REF	ERENCES	
1. Artificial	Intelligence, https://swayam.gov.in/nd2_cec20_cs10/preview.	
	File	
×.		

St. Martin's Engineering College UGC Autonomous

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

ARTIFICIAL INTELLIGENCE LAB

Course Code	Programme	Hou	rs/W	eek	Credits	Max	kimum 🛛	Marks
COM510DC	Minor	L	Т	Р	С	CIE	SEE	Total
CSM510PC	Ninor	0	0	3	1.5	30	70	100
LIST OF EXPERI	MENTS				C	5		
 Implementati Using any da Liner reg Gradient Logistic r Perform and Implementati Implementati 	decent regression plot over fitting in on of KNN classif on of k-means clu stical methods for Artificial Intelliger	in Pyth pt of: a datase ication stering a machine	on. et. algori e learr	thm. hm. ing.	ing,1 st Edi	tion201	1.	
Limited, 2017.			uning					5
EFERENCE BOO	OKS							
· · · · · · · · · · · · · · · · · · ·	ttacharjee,"Practic for beginners, Shr				-			
. Tom Mitchell, M	lachine Learning,	McGrav	v Hill,	2017.				
Christopher M.B. Springer, 2011.	ishop, Pattern Rec	cognition	n and	Mach	ine Learniı	ng,		
	hirani I Friedman	.The Ele	ement	s of St	tatistical			
Learning,2e,201								

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

AI APPLICATIONS

Course	Code	Programme	Ho	ours/	Week	Credits	Ma	ximum	<mark>Marks</mark>
CENICO	ODC	Minor	L	Т	Р	С	CIE	SEE	Total
CSM60	8PC	Minor	4	0	0	4	30	70	100
COURSE	OBJEC	FIVES)Y	
To give dee easy.	p knowle	dge of AI and how A	AI can	be ap	plied i	n various f	fields to	make t	he life
COURSE		MES ourse, students would	l be ab	le to:			2		
1. To corre	elate the A	AI and solutions to m	odern	probl	em.				
2. To decid	le when t	o use which type of A	AI tech	nnique	e. 🖉	<i>Y</i>			
UNIT-I			•					Cla	sses:12
-	-	of natural language icial Intelligence (Al			-	.I. And (Quantun	n Com	puting,
UNIT-II			/					Cla	sses:12
	-	n using human face Investment analysis		•			•	-	redict tl
UNIT-III	2							Cla	asses:12
Robotic Pro	cesses A	utomation for supply	chain	mana	agemei	nt.			
UNIT-IV								Cla	sses:12
AI-Optimiz using AI.	ed Hardw	vare, Digital Twin i.e	. AI M	lodeli	ng, Inf	formation 7	Fechnol	ogy &S	ecurity
UNIT-V								Cla	sses:12

- 1. Sameer Dhanrajani, AI and Analytics, Accelerating Business Decisions, John Wiley & Sons.
- 2. Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems, Bernard Marr, Matt Ward, Wiley.

REFERENCE BOOKS

- 1. Life3.0: Being Human in the Age of Artificial Intelligence by Max Tegmark, 2018.
- 2. Homo Deus: A Brief History of Tomorrow by Yuval Noah Harari, 2017.

Hantins Finestines

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

MACHINE LEARNING

	MACHI	NE L	EAK	INIING				
IVYEAR-I SEMES	STER							
Course Code	Programme	Ho	urs/	Week	Credits	Ma	ximum	Marks
CSM717PC	Minor	L	Т	Р	С	CIE	SEE	Total
CSMITTIC	WIND	3	0	0	3	30	70	100
PREREQUISITES	}						\sim	/
1. Data Structures							O'	
2. Knowledge on s	tatistical methods					\bigcirc		
COURSE OBJEC	ΓIVES				6			
1. This course expl learning, Bayesi	ains machine learnin an learning etc.	g tec	hniqu	ies suc	h as decis	sion tree	\$	
2. To understand co	omputational learning	g the	ory.					
3. To study the pat	tern comparison tech	nique	es.					
COURSEOUTCO		• ,						
After completion of co								
	concepts of computat			-			-	
2. Ability to get the problems in diffe	e skill to apply machi erent areas	ne le	arnın	g techi	inques to	address	the rea	l time
•	Neural Networks and	its u	sage	in mac	hine lear	ning app	olication	1.
UNIT-I INTRO	DUCTION						Clas	sses:12
issues in machine introduction, a conce specific hypothesis, version spaces and ca Decision Tree Learning decision tree learning	bsed learning problem learning, Concept learning task, conce pt learning task, conce version spaces and t andidate elimination, f ing–Introduction, deci g, the basic decision tr ng, inductive bias in	arning ept lea he ca induc sion t ree lea	g and arning andida tive b tree re arning	d the g g as sea ate elin bias. epresen g algori	general to rch, find- nination a ntation, ap	o specif S: findin algorithm propriate othesis s	ic orde g a max n, rema e proble pace sea	ring – imally rks on ems for arch in
	FICIAL NEURAL N	IETV	VOR	KS			Cla	sses:12
Artificial Neural I problems for neura propagation algorith	Networks-1–Introduct l network learning,	ion, perce	neura eptior	al netv ns, mu	ltilayer r	networks	ion, ap and t	propriate he back

Artificial Neural Networks-2 – Remarks on the Back – Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, compares learning algorithms.

UNIT-III BAYES IANLEARNING

Classes:12

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.

Instance - Based Learning- Introduction, k-nearest neighbor algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT-IV

GENETIC ALGORITHMS

Classes:12

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT-V

ANALYTICAL LEARNING

Classes:12

Analytical Learning -1 - Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOKS

1. Machine Learning–Tom M. Mitchell,- MGH.

REFERENCE BOOKS

1. Machine Learning: An Algorithmic Perspective, Stephen Marshl and, Taylor & Francis.

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

DEEP LEARNING

<u> </u>		Dur	TT			C. Pro	3.4	•	
Course Co	ode	Programme			Week	Credits			Marks
CSM716F	PC	Minor	L 3	Т 0	Р 0	C 3	CIE 30	SEE 70	Total 100
	be able			0	0				lata.
 Implement the layers Learn top 	on of con nt deep l of data ics such	urse, students would earning algorithms,	unde eural	erstan netw	d neura orks, re	ecurrent r		raverse	
4. UnderstarUNIT-IIIntroduction:algorithm, UHeuristics for	nd and a NTROI Feed for nit satur c avoidin	cations of Deep Leanalyze Applications DUCTION orward Neural netwation, the vanishing ng bad local minima ularization, Dropout	s of D vorks, grad a, Heu	Deep 1 Grad	Learnin dient d	ng to NLF escent an n, and wa	nd the bays to m	ack pr nitigate	it. Rel
UNIT-II	CONVO	OLUTIONAL NEU	JRAL	L NE	FWOR	RKS		Cla	sses:12
Networks: LS encoders, Var	STM, GI riational	Networks: Architec RU, Encoder Decode Auto-encoders, Adv M Attention and me	er arcl ersari	hitect ial Ge	ures. D enerativ	eep Unsu e Networl	pervised ks,	Learni	
UNIT-III		ICATIONS OF DI PUTER VISION	EEP	LEA	RNIN	G TO		Cla	asses:12
	(D	Learning to Comp	uter V	Visior	ı: Imag	e segmer	ntation,	object o	letection
automatic ima	age capt	ioning, Image genera els, Attention Models	ation	with (Generat	ive adver	sarial ne	tworks	

Applications of Deep Learning to NLP: Introduction to NLP and Vector Space Model of Semantics, Word Vector Representations: Continuous Skip-Gram Model, Continuous Bagof-Words model (CBOW), Glove, Evaluations and Applications in word similarity.

UNIT-V ANALOGY REASONING

Classes:12

Analogy reasoning: Named Entity Recognition, Opinion Mining using Recurrent Neural Networks: Parsing and Sentiment Analysis using Recursive Neural Networks: Sentence Classification using Convolutional Neural Networks, Dialogue Generation with LSTMs

TEXT BOOKS

- 1. Deep Learning by I an Good fellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.

3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCEBOOKS

- 1. Bishop, C, M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub. G.H., and Van Loan C.F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

MACHINE LEARING LAB V YEAR-I SEMESTER **Course Code Programme Hours/Week** Credits **Maximum Marks** Т Р C CIE SEE L **Total CSM718PC** Minor 0 0 3 30 1.5 70 100 COURSE OBJECTIVES

1. The objective of this lab is to get an over view of the various machine learning Techniques and can demonstrate them using python.

COURSE OUTCOMES

- 1. After the completion of the course the student can able to:
- 2. Understand complexity of Machine Learning algorithms and their limitations;
- 3. Understand modern notions in data analysis-oriented computing;
- 4. Be capable of confidently applying common Machine Learning algorithms in practice and implementing their own;
- 5. Be capable of performing experiments in Machine Learning using real-world data

LIST OF EXPERIMENTS

1. The probability that it is Friday and that a student is absent is 3%. Since there are 5 school days in a week, the probability that it is Friday is 20%. What is the Probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)

2. Extract the data from database using python

3. Implement k-nearest neighbors classification using python

4. Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of k-means clustering with 3 means(i.e., 3 centroids)

• VAR1	VAR2	CLAS S
1.713	1.586	0
0.180	1.786	1
0.353	1.240	1
0.940	1.566	0
1.486	0.759	1
1.266	1.106	0
1.540	0.419	1
0.459	1.799	1

0.773 0.186

5. The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.

Medium skiing design single twenties no->high Risk

high golf trading married forties yes -> low Risk

low speedway transport married thirties yes -> med Risk

1

medium football banking single thirties yes->low Risk high

flying media married fifties yes -> high Risk

low football security single twenties no -> med Risk

medium golf media single thirties yes -> med Risk

medium golf transport married forties yes->low Risk

high skiing banking single thirties yes -> high Risk

low golf unemployed married forties yes->high Risk

Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `med Risk' in the dataset?

6. Implement linear regression using python.

7. Implement Naïve Bayes theorem to classify the English text

8. Implement an algorithm to demonstrate the significance of genetic algorithm

9. Implement the finite words classification system using Back-propagation algorithm

TEXT BOOKS

1. Machine Learning– Tom M. Mitchell, -MGH.

REFERENCE BOOKS

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

St. Martin's Engineering College UGC Autonomous

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

DEEP LEARING LAB

Course	C <mark>ode</mark>	Programme	Hou	rs/W	eek	Credits	Max	imum	Marks
	D.C.	2.41	L	Т	Р	С	CIE	SEE	Total
CSM707	PC	Minor	0	0	3	1.5	30	70	100
2. To Un	ild the I derstan	TIVES Foundation of De d How to Build t dents to develop	he Neura	l Net		learning co	oncepts.	,0,	
 Learn Identify variou 	the Suc the Fun fy the D s domai	cessful Completie damental Princip eep Learning Alg	oles of De gorithms	eep Lo for V	earnin arious	g. s Types of 1	Learnin	ig Tasks	
IST OF EX									
		Spyder IDE Env as, Tensor flow a							
	0	Convolution Neu	•				0		
		cationonMNISTd							
0		Deep Learning M				•		• ·	sing
6. Train notes	a sentin	nent analysis moc	lel on IM	IDB d	lataset	t, use RNN	layers	with LS	TM/GR
		Auto encoder alg							• 1
8. Apply tasks.		erative Adversia	Inetwor	KS IO	: imag	e generatio			/ised
tasks.	OKS	erative Adversia			r imag				/1sed
tasks. EXT BOC 1. Deep 2. The E Spring	Learnin lements ger.	g by I an Good fe of Statistical Lea Graphical Models	ellow, Yo arning by	oshua T.Ha	Beng astie, l	io and Aaro R.Tibshirar	on Cour	,	IIT Press

- 1. Bishop C.M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub G.H., and Van Loan C. F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata Mc Graw-Hill Education, 2004.

WEB REFERENCES

- 1. <u>http://www.deeplearning.net</u>
- 2. <u>https://www.deeplearningbook.org/</u>
- 3. https://developers.google.com/machine-learning/crash-course/ml-intro

Marine

- 4. <u>www.cs.toronto.edu/~fritz/absps/imagenet.pdf</u>
- 5. <u>http://neuralnetworksanddeeplearning.com/</u>

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

ROBOTICS PROCESS AUTOMATION

IV YEAR-II	SEME	STER							
Course C	ode	Programme	Ho	ours/V	Veek	Credits	Ma	ximum	Marks
CSM805	DF	Minor	L	Т	Р	С	CIE	SEE	Total
C5141005.		WINDI	3	0	0	3	30	70	100
COURSE O	BJECT	TIVES						$\mathbf{O}^{\mathbf{Y}}$	
Students wil To make		e to: familiar with the con	cepts	of Ro	obotic H	Process A	utomatic	on.	
 Describe Identify Understand 	on of co e RPA, w and und and how	MES burse, students would where it can be applie lerstand Web Control to handle various de creators, Web record	ed and Rooi vices	l how n and and t	Client	Introduct kload			
UNIT-I				$\mathbf{\mathbf{S}}$				Cla	sses:12
	nation A	ic Process Automatic ny where Enterprise							
UNIT-II								Cla	sses:12
Audit, Workl	oad, Ins	nd Client Introduction ights) – Features Pan Bots Uploaded and Ci	el-A	ctivity			•		
UNIT-III		/						Cla	asses:12
SLA Calculat Administratio	tor) - Au on (Conf	opment and Run time adit Log (View Activ igure Settings, Users Client introduction a	vities , Role	Logg es, Li	ed which cense a	ch are ass	sociated	with W	eb CR) –
UNIT-IV								Cla	asses:12
-Task Editor	– Variat	ion–Recorders–Smar bles – Command Lib eration Command - X	rary –	Loop	p Com				
UNIT-V								Cla	asses:12
Command Ob	ject Clo	ommand – PDF Integ oning Command – Er w Designer - Report I	ror Ha	andlir					vs Control

TEXT BOOKS

1. Learning Robotic Process Automation: Create Software robots and automate business processes with the leading RPA tool - Ui Path: Create Software robots. With the leading RPA tool – Ui Path Kindle Edition.

REFERENCE BOOKS

a concerns 1. Robotic Process Automation a Complete Guide-2020 Edition Kindle Edition.

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

NATURAL LANGUAGE PROCESSING

Course Co	ode	Programme	Ho	ours/V	Week	Credits	Ma	ximum	<mark>ı Marks</mark>
CSM806F	ÞF	Minor	L	Т	Р	С	CIE	SEE	Total
CDIVIOUUI			3	0	0	3	30	70	100
COURSE O Students will Introduction to statistics. COURSE O After completion . Show sensi grammars. 2. Understand empirical N 3. Able to ma estimate par	BJEC1 be able to some UTCO on of co tivity to and ca ULP syst mipulate rameter	e to: of the problems and MES urse, students would b linguistic phenome urryout proper experi	soluti be ab na an imenta ruct s id uns	ions o le to: d an al me tatisti	of NLP ability ethodol ical mo	to model ogy for tr odels over	them w raining a	ith form and eva	nal luating
		erent language mode			iques.				
UNIT-I	ign diffe FINDI	erent language model	ling T ' <mark>URE</mark>	echni	VORD				sses:12
5. Able to dest UNIT-I Finding the S Morphologics Finding the	ign diffe FINDI Structur al Mode Struct	erent language model NG THE STRUCT re of Words: Words els ture of Document	ling T T URE s and s: In	The The	VORD ir Con	nponents,		and Ch	nallenge
5. Able to dest UNIT-I Finding the S Morphologica Finding the	ign diffe FINDI Structur al Mode Struct Perform	erent language model NG THE STRUCT re of Words: Words els	ling T T URE s and s: In	The The	VORD ir Con	nponents,		and Cr	nallenge
 Able to dest UNIT-I Finding the S Morphologica Finding the Approaches, UNIT-II Syntax Analy Syntax, Repr 	ign diffe FINDI Structur al Mode Struct Perform SYNT ysis: Pa esentati	erent language model NG THE STRUCT re of Words: Words els ture of Document nances of the Appro	Iing T IURE s and s: In aches guage acture	COFV The trodu	vord ir Con action, ee ban	nponents, Method ks: A Da	s, Con	and Ch nplexity Cla ren App	nallenges 7 of th sses:12 proach t
 Able to dest UNIT-I Finding the S Morphologica Finding the Approaches, UNIT-II Syntax Analy Syntax, Repr 	ign diffe FINDI Structur al Mode Struct Perform SYNT ysis: Pa esentation Parsin	erent language model NG THE STRUCT re of Words: Words els ture of Document nances of the Appro AX ANALYSIS arsing Natural Lang ion of Syntactic Stru	Iing T IURE s and s: In aches guage acture	COFV The trodu	vord ir Con action, ee ban	nponents, Method ks: A Da	s, Con	and Ch nplexity Cla ren App ls for A	nallenger of th sses:12 proach t mbiguit
 Able to dest UNIT-I Finding the S Morphologica Finding the Approaches, UNIT-II Syntax Analy Syntax, Repr Resolution in UNIT-III 	ign diffe FINDI Structur al Mode Struct Perform SYNT ysis: Parsin Parsin SEM/	erent language model NG THE STRUCT re of Words: Words els ture of Document nances of the Appro AX ANALYSIS arsing Natural Lang ion of Syntactic Strug, Multilingual Issue	ling T URE s and s: In aches guage acture es	COFV The trodu e, Tre e, Par	vord ir Con action, ee ban sing A	nponents, Method ks: A Da lgorithms	s, Con nta-Driv , Mode	and Chaplexity Cla ren App ls for A Cla	nallenger of th sses:12 proach t mbiguit asses:12
 Able to dest UNIT-I Finding the S Morphologic Finding the Approaches, UNIT-II Syntax Analy Syntax, Repring Resolution in UNIT-III Semantic Par 	ign diffe FINDI Structur al Mode Struct Perform SYNT ysis: Parsin Parsin SEM/	erent language model NG THE STRUCT re of Words: Words els ture of Document nances of the Appro AX ANALYSIS arsing Natural Lang ion of Syntactic Stru g, Multilingual Issue ANTIC PARSING	ling T URE s and s: In aches guage acture es	COFV The trodu e, Tre e, Par	vord ir Con action, ee ban sing A	nponents, Method ks: A Da lgorithms	s, Con nta-Driv , Mode	and Chaplexity Cla ren App ls for A Cla ns, Wor	nallenger of th sses:12 proach t mbiguit asses:12
 Able to dest UNIT-I Finding the S Morphologic Finding the Approaches, UNIT-II Syntax Analy Syntax, Repr Resolution in UNIT-III Semantic Par Systems, Sof UNIT-IV 	ign diffe FINDI Structur al Mode Struct Perform SYNT ysis: Pa resentation SYNT resentation SEM	erent language model NG THE STRUCT re of Words: Words els ture of Document nances of the Appro AX ANALYSIS arsing Natural Lang ion of Syntactic Stru g, Multilingual Issue ANTIC PARSING	ic Inte	COFV The trodu , Tre , Tre , Par	vord ir Con action, ee ban sing A tation,	nponents, Method ks: A Da lgorithms System P	s, Con nta-Driv , Mode Paradign	and Chaplexity Cla ren App ls for A Cla ns, Wor	nallenge 7 of th sses:12 proach t mbiguit asses:12 d Sense

Discourse Processing: Cohesion, Reference Resolution, Discourse Cohesion and Structure Language Modeling: Introduction, N-Gram Models, Language Model Evaluation, Parameter Estimation, Language Model Adaptation, Types of Language Models, Language-SpecificModelingProblems,MultilingualandCrossLingualLanguage Modeling

TEXT BOOKS

- 1. Multilingual natural Language Processing Applications: From Theory to Practice Daniel M. Bikel and Imed Zitouni, Pearson Publication.
- 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary.

REFERENCE BOOKS

1. Speech and Natural Language Processing –Daniel Jurafsky & James H Martin, Pearson Publications.

Marinstracture

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

GAME THEORY

Course Code								
Course Cour	Programme	Но	urs/\	Week	Credits	Ma	ximum	Marks
CSM807PE	Minor	L	Т	Р	С	CIE	SEE	Total
CSW0071 E	WIIIO	3	0	0	3	30	70	100
COURSE OBJECT	FIVES					Ć		
Students will be abl	e to:							
	explain in depth th me-Perfect Nash Equ			-				chasNash
COURSE OUTCO After completion of co	MES ourse, students would	be ab	le to:	Ø				
1. Understand th	e basic concepts of g	ame	theor	y and s	olutions.			
2. Understand di	fferent types of equil	ibriu	m int	erpreta	tions.			
3. Understand an	nd analyze knowledge	e and	solu	tion co	ncepts.			
4. Analyze exten	sive games with perf	fect in	nform	nation.			T	
UNIT-I FINDI	ING THE STRUCT	URE	OF	WORI	DS		Cla	sses:12
Competitive Equil Interpretations, Bou Nash Equilibrium-S	e Theory, Games and librium, Rational I unded Rationality Ter	Beha					the T	
	strategic Games, Nasily Competitive Ga	h Equ	ology uilibr	and No ium Ex	otation.	Existenc	and E ce of a l	Deductive Nash
Imperfect Informati	ly Competitive Ga	h Equ	ology uilibr	and No ium Ex	otation.	Existenc	and I ce of a I ic Gan	Deductive Nash
Imperfect InformatiUNIT-IISYNTMixed, Correlated, Interpretations of M Equilibrium, Ratio	ly Competitive Gar on. CAX ANALYSIS and Evolutionary E lixed Strategy Nash E onalizability and E prated Elimination of	h Equ mes, Equili Equili	logy iilibr Bay briun briun ed l	and No ium Ex esian n - Mi n, Corr Elimina	amples, I Games: xed Stra related Ec	Existence Strateg tegy Na quilibriu Domi	and I ce of a l ic Gan Cla ash Equ im, Evo inated	Deductive Nash nes with sses:12 uilibrium plutionary Actions
Imperfect InformatiUNIT-IISYN1Mixed, Correlated, Interpretations of M Equilibrium, Ratio Rationalizability Ite of Weakly Dominat	ly Competitive Gar on. CAX ANALYSIS and Evolutionary E lixed Strategy Nash E onalizability and E prated Elimination of	h Equ mes, Equili Equili	logy iilibr Bay briun briun ed l	and No ium Ex esian n - Mi n, Corr Elimina	amples, I Games: xed Stra related Ec	Existence Strateg tegy Na quilibriu Domi	and I ce of a l ic Gan Cla ash Equ m, Evc inated ated El	Deductive Nash nes with sses:12 uilibrium plutionary Actions
Imperfect InformatiUNIT-IISYN1Mixed, Correlated, Interpretations of M Equilibrium, Ratio Rationalizability Ite of Weakly DominatUNIT-IIISEMKnowledge and Equ	ly Competitive Ga on. CAX ANALYSIS and Evolutionary E lixed Strategy Nash H onalizability and D prated Elimination of red Actions.	h Equ mes, Equili Equili Iterato Stric	briun briun briun briun briun ed l ctly D	and No ium Ex esian n - Mi n, Corr Elimina Domina	otation. amples, 1 Games: xed Stra related Ec ation of ted Actic	Existence Strategy tegy Na quilibriu Domi ons, Itera	and I ce of a l ic Gan Cla ash Equ an, Evc inated ated El Cla ge, Car	Deductive Nash nes with sses:12 uilibrium plutionary Actions imination asses:12 n People
Imperfect InformatiUNIT-IISYN1Mixed, Correlated, Interpretations of M Equilibrium, Ratio Rationalizability Ite of Weakly DominatUNIT-IIISEMKnowledge and Equ	ly Competitive Ga on. CAX ANALYSIS and Evolutionary E lixed Strategy Nash E onalizability and D prated Elimination of ed Actions. ANTIC PARSING ailibrium - A Model of	h Equ mes, Equili Equili Iterato Stric	briun briun briun briun briun ed l ctly D	and No ium Ex esian n - Mi n, Corr Elimina Domina	otation. amples, 1 Games: xed Stra related Ec ation of ted Actic	Existence Strategy tegy Na quilibriu Domi ons, Itera	and I ce of a l ic Gan Cla ash Equ m, Evo inated ated El cla ge, Car ail Gam	Deductive Nash nes with sses:12 uilibrium plutionary Actions imination asses:12 n People

Sub game Perfect Equilibrium, Two Extensions of the Definition of a Game, The Interpretation of a Strategy, Two Notable Finite Horizon Games, Iterated Elimination of Weakly Dominated Strategies Bargaining Games Bargaining and Game Theory, A Bargaining Game of Alternating Offers Sub game Perfect Equilibrium Variations and Extensions.

UNIT-V

DISCOURSE PROCESSING

Classes:12

Repeated Games - The Basic Idea, Infinitely Repeated Games vs. Finitely Repeated Games. Infinitely Repeated Games: Definitions, Strategies as Machines, Trigger Strategies: Nash Folk Theorems Punishing for a Limited Length of Time: A Perfect Folk Theorem for the Limit of Means Criterion Punishing the Punisher: A Perfect Folk Theorem for the Overtaking Criterion Rewarding Players Who Punish: A Perfect Folk Theorem for the Discounting Criterion The Structure of Sub game Perfect Equilibria Under the Discounting Criterion Finitely Repeated Game.

TEXT BOOKS

- 1. A course in Game Theory, M.J. Osborne and A. Rubinstein, MIT Press.
- 2. Game Theory, Roger Myerson, Harvard University Press.
- 3. Game Theory, D. Fudenberg and J. Tirole, MIT Press.

REFERENCE BOOKS

st.

- 1. Theory of Games and Economic Behavior, J. von Neumann and O. Morgenstern, New York: John Wiley and Sons.
- 2. Games and Decisions, R.D. Luce and H.Raiffa, New York: John Wiley and Sons.
- 3. Game Theory, G. Owen, 2nd Edition, New York: Academic Press.

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

COMPUTER VISION AND ROBOTICS

IV YEAR- II SEMESTER									
Course Code	Programme	Ho	urs/V	Week	Credits	Ma	ximum	n Marks	
CSM809PE	Minor	L	Т	Р	С	CIE	SEE	Total	
C510091 E		3	0	0	3	30	70	100	
PRE REQUISITES	5						D Y		
UG level course in l	Linear Algebra and F	Proba	bility			\bigcirc			
COURSE OBJECT	FIVES								
Students will be able	e to:					0			
1. To understand	the Fundamental Co	oncep	ts Re	lated T	To source	s, shado	ws and	shading.	
2. To understand	the Geometry of Mu	ultiple	e Vie	ws.					
COURSEOUTCON After completion of co		be ab	le to:						
1. Implement fur	ndamental image pro	cessi	ng teo	chnique	es require	ed for co	mputer	r vision	
2. Implement bo	undary tracking tech	nique	S						
3. Apply chain co and ellipse de	odes and other region tections.	n des	cripto	ors, Ho	ugh Tran	sform fo	or line,	circle,	
4. Apply 3 Divis	ion techniques and In	mpler	ment	motior	n related	techniqu	es.		
5. Develop appli	cations using compu	ter vi	sion	techniq	lues.				
UNIT-I CAME	ERAS						Cla	sses:12	
CAMERAS: Pinhol	e Cameras								
Radiometry-Measur	ring Light: Light in S	Space	, Lig	ht Surf	aces, Imp	portant S	Special	Cases.	
	And Shading: Quali dels, Application: 1				•				
	of Color, Human Co e Color from Image			ption, I	Represen	ting Col	or, A N	Model for	
UNIT-II LINEA	R FILTERS, EDG	E DE	TEC	TION	& TEX	TURE	Cla	sses:12	
	ear Filters and Conv ier Transforms, Sam								
Edge Detection: No	ise, Estimating Deriv	vative	es, De	etecting	g Edges.				
-	ing Texture, Analy sis by Sampling Loc			•		-	ented I	Pyramids,	

UNIT-III STEREOPSIS & SEGMENTATION BY CLUSTERING Classes:12

The Geometry of Multiple Views: Two Views

Stereopsis: Reconstruction, Human Stereposis, Binocular Fusion, Using More Cameras. Segmentation by Clustering: What Is Segmentation? Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering

UNIT-IV SEGMENTATION

Classes:12

Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness.

Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice.

Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples.

UNIT-V

GEOMETRIC CAMERA MODELS

Classes:12

Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetric, An Application: Mobile Robot Localization

Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, and Application: Registration in Medical Imaging Systems, Curved Surfaces and Alignment.

TEXT BOOKS

1. David A. Forsyth and Jean Ponce: Computer Vision–A Modern Approach, PHI Learning (Indian Edition), 2009.

REFERENCE BOOKS

- 1. E.R. Davies: Computer and Machine Vision Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.
- 2. R.C. Gonzalez and R.E. Woods "Digital Image Processing" Addison Wesley 2008.
- 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011.

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

SPEECH AND VIDEO PROCESSING

	ode	Programme	Но	urs/	Veek	Credits	Maximun		m Marks	
CSM810PE	DE		L T		Р	С	CIE	SEE	Total	
CSM810	PE	Minor	3	0	0	3	30	70	100	
COURSE C)BJECT	TIVES							Y	
Knowledge	on speed	ch and video process	ing to	echni	ques					
COURSE C fter completi		MES urse, students would	be ab	le to:			6			
		nechanisms of huma extraction.	n spe	ech p	product	ion syste	ms and	method	ls for	
2. Unders	stand ba	sic algorithms of spe	eech a	analy	sis and	speech r	ecogniti	on.		
		techniques in d and sensors.	ligital	vić	leo pr	ocessing,	inclu	ding i	maging	
4. Apply	motion	estimation and object	et trac	cking	algorit	thms on v	video se	quence.		
UNIT-I	SPEEC	CH PROCESSING	CON	ICEP	TS			Clas	Classes:12	
for speech re	ecogniti	odeling of speech, r on, convolution, line . Linear Prediction	ear ai	nd no	nlinear	r filter ba				
	SDEEC				spece				stillatio	
UNIT-II	SPEEC	H RECOGNITION	1		speee			Cla	sses:12	
Speech recog signal, featu robustness i Distance me	gnition: re extra ssues, d	H RECOGNITION Real and Complex C ction for speech, st iscrimination in the vector quantization r	Cepstr atic a	rum, a and d ure s	applica ynamic pace, f	tion of ce c feature ceature se	for spe lection,	nalysis ech rec	sses:12 to speec	
Speech recog signal, featu robustness i	gnition: re extra ssues, d asures, v	Real and Complex C ction for speech, st iscrimination in the	Cepstr atic a featu node	rum, a and d ure s ls. Ga	applica ynamic pace, f aussian	tion of ce c feature ceature se	for spe lection,	nalysis ech rec MFCC	sses:12 to speec	
Speech recog signal, featu robustness i Distance me HMM. UNIT-III Basics of Vi color video, Shape mode	gnition: re extra ssues, d asures, v BASI deo Proc video ca l, motion	Real and Complex C ction for speech, st iscrimination in the vector quantization 1	Cepstr atic a feat node OCE ation y, pin el, tw	rum, a und d ure s ls. Ga SSIN , perc ihole /o-din	applica ynamic pace, f aussian G ception model, nensio	tion of ce c feature eature se Mixture and repro , CAHV 1 nal motic	for spe lection, model, esentation nodel, Con mode	nalysis ech rec MFCC Cla on: Prir Camera	sses:12 to speec cognitior C, LPCC asses:12 nciple of	
Speech recog signal, featu robustness i Distance me HMM. UNIT-III Basics of Vi color video, Shape mode	gnition: re extra ssues, d asures, v BASI deo Proc video ca l, motion nsional 1	Real and Complex C ction for speech, st iscrimination in the vector quantization r CS OF VIDEO PR cessing: Video form imeras, video displa n model, Scene mod	Cepstr atic a feat node OCE ation y, pin el, two oxima	rum, a und d ure s ls. Ga SSIN , perc hole /o-din ation	applica ynamic pace, f aussian G ception model, nensio of proj	tion of ce c feature eature se Mixture and repro , CAHV 1 nal motic ective ma	for spe lection, model, esentation nodel, Con mode	nalysis ech rec MFCC Cla on: Prin Camera els.	sses:12 to speec cognitior C, LPCC asses:12 nciple of	

Motion estimation, Depth from motion.Motion analysis applications: Video Summarization, video surveillance.

UNIT-V OBJECT TRACKING AND SEGMENTATION Classes:12

Object Tracking and Segmentation: 2D and 3D video tracking, blob tracking, kernel based counter tracking, feature matching, filtering Mosaicing, video segmentation, mean shift based, active shape model, video short boundary detection. Inter frame compression, Motion compensation.

TEXT BOOKS

- 1. Fundamentals of Speech recognition L. Rabiner and B. Juang, Prentice Hall signal processing series.
- 2. Digital Video processing, A Murat Tekalp, Prentice Hall.
- 3. Discrete time speech signal processing: principles and practice, Thomas F. Quatieri, Coth.
- 4. Video Processing and Communications, Yao Wang, J. Osternann and Qin Zhang, Pearson Education.

REFERENCE BOOKS

- 1. "Speech and Audio Signal Processing", B. Gold and N. Morgan, Wiley.
- 2. "Digital image sequence processing, Compression, and analysis", Todd R. Reed, CRC Press.
- 3. "Hand book of Image and Video processing", AlBovik, Academic press, second Edition.

UGC Autonomous NBA & NAAC A+ Accredited Dhulapally, Secunderabad-500100 www.smec.ac.in

SOFT COMPUTING

	Code	Programme	Но	urs/	Week	Credits	Ma	<mark>Marks</mark>	
CEMPOR	DE	Minor	L	Т	Р	С	CIE	SEE	Total
CSM808	PE	Minor	3	0	0	3	30	70	100
 Introduce experies Familia technics Learn Acquine COURSE Constraints Identific Comp Identific Comp Unders Apply Unders Perform 	arize wi uce and ence. arize the ques. the concere the concere re the known DUTCO ion of co fy the outationa stand fuz the Class stand the m variou	th soft computing co use the idea of fuzzy e Neuro-Fuzzy mode epts of Genetic algo owledge of Rough S	y logi eling orithm Sets. be ab een ing to ering etwor etic al	c and using a and le to: Conv b han techn ks an lgorit	g Class its app vention dle and iques o d its ap hms, R	ification dications. al Artif d solve en on variou oplication Rough Set	and Clu ficial I ngineerin s applic us. ts.	Intellige ng prob ations.	ence to
UNIT-I	INTRO	DUCTION TO SO	FT C	COM	PUTIN	NG		Clas	sses:12
Introduction	Soft Cor	Computing: Evolution							
computing, S	ing, App	nputing Methods, Re plications of Soft Co				-			ensues o
computing, Soft comput		nputing Methods, Re				-		Cla	sses:12
computing, Soft comput UNIT-II	FUZZY	nputing Methods, Re plications of Soft Co	omput	ing T	Technic	jues.	Rule –		sses:12
computing, Soft comput UNIT-II	FUZZY	nputing Methods, Re blications of Soft Co SYSTEMS	omput	ing T	Technic	jues.	Rule –	Based S	sses:12
computing, Soft comput UNIT-II Fuzzy Syste UNIT-III	FUZZY	nputing Methods, Re blications of Soft Co SYSTEMS	ionput	ing T Fuzz	Yechnic Y Logi	jues.	Rule –	Based S	sses:12 Systems
computing, Soft comput UNIT-II Fuzzy Syste UNIT-III	FUZZY ms: Fuz sion Mak	nputing Methods, Re olications of Soft Co SYSTEMS zy Sets, Fuzzy Relat	ions,	ing T Fuzz	Yechnic Y Logi	jues.	Rule –	Based S	sses:12 Systems

UNIT-V

Rough Sets, Rough Sets, Rule Induction, and Discernibility Matrix, Integration of Soft Computing Techniques.

TEXT BOOKS

1.Soft Computing–Advances and Applications – Jan 2015 by B.K. Tripathy and J. Anuradha – Cengage Learning.

REFERENCE BOOKS

- S.N. Sivanandam & S.N. Deepa, "Principles of Soft Computing", 2nd edition, Wiley India, 2008.
- 2. David E. Goldberg, "Genetic Algorithms In Search, optimization and Machine learning", Pearson Education.
- 3. J.S.R. Jang, C.T. Sunand E. Mizutani, "Neuro Fuzzy and Soft Computing", Pearson Education, 2004.
- 4. G.J. Klir & B. Yuan, "Fuzzy Sets & Fuzzy Logic", PHI, 1995.
- 5. Melanie Mitchell, "An Introduction to Genetic Algorithm", PHI, 1998.
- 6. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", Mc Graw Hill International Editions, 1995.